基于BP神经网络的技术创新预测与评估模型及其应用研究
[1] [2] [3] 下一页 估方法, 均处于研究之中, 我们认为目前在企业技术创新评估方面应做的工作是: (1) 建立一套符合我国实际情况的技术创新评估指标体系; (2) 建立一种适应于多因素、非线性和不确定性的综合评估方法。 这种情况下, 神经网络技术就有其特有的优势, 以其并行分布、自组织、自适应、自学习和容错性等优良性能, 可以较好地适应技术创新预测和评估这类多因素、不确定性和非线性问题, 它能克服上述各方法的不足。本项目以BP神经网络作为基于多因素的技术创新预测和评估模型构建的基础, BP神经网络由输入层、隐含层和输出层构成, 各层的神经元数目不同, 由正向传播和反向传播组成, 在进行产品技术创新预测和评估时, 从输入层输入影响产品技术创新预测值和评估值的n个因素信息, 经隐含层处理后传入输出层, 其输出值Y即为产品技术创新技术性能指标的预测值或产品技术创新的评估值。这种n个因素指标的设置, 考虑了概括性和动态性, 力求全面、客观地反映影响产品技术创新发展的主要因素和导致产品个体差异的主要因素, 尽管是黑匣子式的预测和评估, 但事实证明它自身的强大学习能力可将需考虑的多种因素的数据进行融合, 输出一个经非线性变换后较为精确的预测值和评估值。 据文献查阅, 虽然在技术创新预测和评估的现有原理和方法的改进和完善方面有一定的研究,如文献[08]、[09]、[11]等, 但尚未发现将神经网络应用于技术创新预测与评估方面的研究, 在当前产品的市场寿命周期不断缩短、要求企业不断推出新产品的经济条件下, 以神经网络为基础来建立产品技术创新预测与评估模型, 是对技术创新定量预测和评估方法的有益补充和完善。 三、论文预期成果的理论意义和应用价值 本项目研究的理论意义表现在: (1) 探索新的技术创新预测和评估技术, 丰富和完善技术创新预测和评估方法体系; (2) 将神经网络技术引入技术创新的预测和评估, 有利于推动技术创新预测和评估方法的发展。 本项目研究的应用价值体现在: (1) 提供一种基于多因素的技术创新定量预测技术, 有利于提高预测的正确性; (2)提供一种基于BP神经网络的综合评估方法, 有利于提高评估的科学性; (3) 为企业的技术创新预测和评估工作提供新的方法论和实用技术。 四、课题研究的主要内容 研究目标: 以BP神经网络模型为基础研究基于多因素的技术创新预测和评估模型, 并建立科学的预测和评估指标体系及设计相应的模型计算方法, 结合企业的具体实际, 对指标和模型体系进行实证分析, 使研究具有一定的理论水平和实用价值。 研究内容: 1、影响企业技术创新预测和评佑的相关指标体系确定及其量化和规范化。从企业的宏观环境和微观环境两个方面入手, 密切结合电子商务和知识经济对企业技术创新的影响, 系统综合地分析影响产品技术创新的各相关因素, 建立科学的企业技术创新预测和评估指标体系, 并研究其量化和规范化的原则及方法。 2、影响技术创新预测和评估各相关指标的相对权重确定。影响技术创新发展和变化各相关因素在输入预测和评估模型时, 需要一组决定其相对重要性的初始权重, 权重的确定需要基本的原则作支持。 3、基于BP神经网络的技术创新预测和评估模型研究。 根据技术创新预测的特点, 以BP神经网络为基础, 构建基于多因素的技术创新预测和评估模型。 4、基于BP神经网络的技术创新预测和评估模型计算方法设计。根据基于BP神经网络的技术创新预测和评估模型的基本特点, 设计其相应的计算方法。 5、基于BP神经网络的技术创新预测和评估模型学习样本设计。根据相关的历史资料, 构建基于BP神经网络的技术创新预测和评估模型的学习样本, 对预测和评估模型进行自学习和训练, 使模型适合实际情况。 6、基于BP神经网络的技术创新预测和评估技术的实证研究。以一般企业的技术创新预测与评估工作为背景, 对基于BP神经网络的技术创新预测和评估技术进行实证研究。 创新点: 1、建立一套基于电子商务和知识经济的技术创新预测和评估指标体系。目前,在技术创新的预测和评估指标体系方面, 一种是采用传统的指标体系, 另一种是采用国外先进国家的指标体系, 如何结合我国实际当前经济形势, 参考国外先进发达国家的研究工作, 建立一套适合于我国企业技术创新预测和评估指标体系, 此为本研究要做的首要工作, 这是一项创新。 2、研究基于BP神经网络的技术创新预测和评估模型及其计算方法。神经网络技术具有并行分布处理、自学习、自组织、自适应和容错性等优良性能, 能较好地处理基于多因素、非线性和不确定性预测和评估的现实问题, 本项目首次将神经网络技术引入企业的技术创新预测和评估, 这也是一项创新。 五、课题研究的 上一页 [1] [2] [3] 下一页 基本方法、技术路线的可行性论证 1、重视系统分析。以系统科学的思想为指导来分析影响企业技术创新发展和变化的宏观因素和微观因素, 并研究影响因素间的内在联系, 确定其相互之间的重要度, 探讨其量化和规范化的方法, 将国外先进国家的研究成果与我国具体实际相结合, 建立我国企业技术创新预测和评估的指标体系。 2、重视案例研究。从国内外技术创新预测与决策成功和失败的案例中, 发现问题、分析问题, 归纳和总结出具有共性的东西, 探索技术创新预测与宏观因素与微观因素之间的内在关系。 3、采用先简单后复杂的研究方法。对基于BP神经网络的技术创新预测和评估模型的研究, 先从某一行业出发, 定义模型的基本输入因素, 然后, 逐步扩展, 逐步增加模型的复杂度。 4、理论和实践相结合。将研究工作与具体企业的技术创新实际相结合, 进行实证研究, 在实践中丰富和完善, 研究出具有科学性和实用性的成果。 六、开展研究已具备的条件、可能遇到的困难与问题及解决措施 本人长期从事市场营销和技术创新方面的研究工作, 编写出版了《现代市场营销学》和《现代企业管理学》等有关著作, 发表了“企业技术创新与营销管理创新”、“企业技术创新与营销组织创新”及“企业技术创新与营销观念创新”等与技术创新相关的学术研究论文, 对企业技术创新的预测和评估有一定的理论基础, 也从事过企业产品技术创新方面的策划和研究工作, 具有一定的实践经验, 与许多企业有密切的合作关系, 同时, 对神经网络技术也进行过专门的学习和研究, 所以, 本项目研究的理论基础、技术基础及实验场所已基本具备, 能顺利完成本课题的研究, 取得预期的研究成果。 七、论文研究的进展计划 2003.07-2003.09:完成论文开题。 2003.09-2003.11:影响企业技术创新发展的指标体系研究及其量化和规范化。 2003.11-2004.01:基于BP神经网络的技术创新预测和评估模型的构建。 2004.01-2004.03:基于BP神经网络的技术创新预测和评估模型计算方法研究。 2004.03-2004.04:基于BP神经网络的技术创新预测和评估模型体系的实证研究。 2004.04-2004.06:完成论文写作、修改定稿,准备答辩。 主要参考文献: [01] 傅家骥、仝允桓等. 技术创新学. 北京: 清华大学出版社 1998 [02] 吴贵生. 技术创新管理. 北京: 清华大学出版社 2000 [03] 柳卸林. 企业技术创新管理. 北京: 科学技术出版社 1997 [04] 赵志、陈邦设等. 产品创新过程管理模式的基本问题研究. 管理科学学报. 2000/2. [05] 王亚民、朱荣林. 风险投资项目ECV评估指标与决策模型研究. 风险投资. 2002/6 [06] 赵中奇、王浣尘、潘德惠. 随机控制的极大值原理及其在投资决策中的应用. 控制与决策. 2002/6 [07] 夏清泉、凌婕. 风险投资理论和政策研究. 国际商务研究. 2002/5 [08] 陈劲、龚焱等. 技术创新信息源新探. 中国软科学. 2001/1. pp86-88 [09] 严太华、张龙. 风险投资评估决策方法初探. 经济问题. 2002/1 [10] 苏永江、李湛. 风险投资决策问题的系统分析. 学术研究. 2001/4 <11> 孙冰. 企业产品开发的评价模型及方法研究. 中国管理科学. 2002/4 [12] 诸克军、杨久西、匡益军. 基于人工神经网络的石油勘探有利性综合评价. 系统工程理论与实践. 2002/4 [13] 杨力. 基干BP 神经网络的城市房屋租赁估价系统设计. 中国管理科学. 2002/4 上一页 [1] [2] [3] |
南国风网站的版权信息:保留所有权力